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A finite-element model for rubber particles in a polymeric matrix has recently been proposed 
which is based upon a collection of spheres, each consisting of a sphere of rubber 
surrounded byan annulus of matrix. We have used this model to investigate in detail the 
stress distributions in and around a rubber particle, or a void, in a matrix of epoxy polymer. 
We have deduced the bulk modulus of the rubber-toughened epoxy and considered the 
implications of the stress distributions on the observed toughening micromechanisms. Of 
particular concern has been the effects of the volume fraction and the properties of the 
rubber phase. 

1. Introduction 
Epoxy resins are frequently toughened by the addition 
of rubber particles and such two-phase polymers are 
important materials both as structural adhesives and 
as matrices for fibre- and particulate-composites 
[1-6]. The rubber particles are typically about 0.5 to 
5 gm in diameter and are present at a volume fraction 
of between 5 and 30 %. The presence of these particles 
greatly increases the toughness of the epoxy polymer, 
but does not significantly decrease other important 
properties of the material. The mechanisms of 
toughening in these rubber-toughened epoxy poly- 
mers is therefore an important area for both experi- 
mental studies and predictive modelling. In particular, 
the use of predictive modelling as an investigative tool 
can lead to both the elucidation of experimental ob- 
servations and suggestions for possible routes to im- 
proved materials. 

An important requirement in establishing a predict- 
ive model is to identify the micromechanisms which 
leadto the improvement in the toughness of the cross- 
linked epoxy polymer when it contains a dispersed 
phase of rubber particles. Two important toughening 
mechanisms have been identified for such two-phase 
materials. The first is localized shear yielding, or shear 
banding, which occurs between rubber particles at an 
angle of approximately _+ 45 ~ to the direction of the 
maximum principal tensile stress [1-6]. Due to the 
large number of particles involved, the volume of 
thermoset matrix material which can undergo plastic 
yielding is effectively increased compared to the 
single-phase polymer. Consequently, far more irre- 
versible energy dissipation is involved and the tough- 
ness of the material is improved. The second mecha- 

0022-2461  �9 !995 Chapman & Hall 

nism is the internal cavitation, or interfacial debon- 
ding, of the rubbery particles, which then may enable 
the subsequent growth of these voids by plastic defor- 
mation of the epoxy matrix [5-7]. The importance of 
this mechanism is that the irreve}sible hole-growth 
process of the epoxy matrix also dissipates energy and 
so contributes to the enhanced fracture toughness. 

The above mechanisms are triggered by the differ- 
ent types of stress concentrations which act within the 
overall stress field in the two-phase material. For 
example, the initiation and growth of the shear bands 
are largely governed by the concentration of yon 
Mises (deviatoric) stress in the matrix, whilst the cavi- 
tation, or interracial debonding, of the rubber particle 
is largely controlled by the hydrostatic (dilatational) 
tensile stresses which are acting. Obviously, a basic 
step in the development of a predictive model is, 
therefore, to map the distribution of stresses which are 
acting in and around the rubber particles as a function 
of the volume fraction of the rubber phase and the 
properties of the rubber particles and epoxy matrix. 

To analyse accurately the stress field, it is necessary 
to employ numerical methods such as the finite-ele- 
ment method. The first such study of rubber-modified 
polymers, which used an elastic analysis, was reported 
by Broutman and Panizza [8]. They simplified the 
two-phase material into an assembly of axisymmetric 
cylindrical cells. Their study revealed that the max- 
imum direct and shear stresses were located at the 
equator of the particle, indicating that yielding of the 
matrix would initiate from this point. They also found 
that the stress concentration increased in size as the 
volume fraction of rubbery particles was in- 
creased. Later, Agarwal and Broutman [9] developed 
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a three-dimensional model assuming a regular pack- 
ing of the rubbery particles. The results from using 
such a model were compared with the previous results 
obtained from employing the axisymmetric analysis. 
The two sets of results were found to agree well when 
presented as a function of inter-particle spacing. Since 
a three-dimensional analysis was more complicated, 
and more costly in terms of computer resources, the 
authors subsequently concluded that the axisymmet- 
ric model could be used without a significant loss in 
accuracy. 

In a more recent study, a spatial statistical tech- 
nique, developed by Davy and Guild [10], was incorp- 
orated into the axisymmetric model by Guild and 
Young [11] to study the influence of particle distribu- 
tion on stress states around rubber particles. Their 
study suggested that particle distribution does not 
significantly change the calculated stress states around 
rubber particles when the rubbery volume fraction is 
below 0.3, which is usually the upper limit in rub- 
ber-toughened epoxy polymers [1]. In a later paper 
Guild et al. [12] again used the axisymmetric model, 
but modelled the effect of particle morphology on the 
stress distributions in the material. 

The above-mentioned analyses were essentially 
elastic in nature. However, Huang and Kinloch [5, 6] 
have developed a two-dimensional plane-strain model 
to analyse the stress fields around the dispersed rub- 
bery particles in multiphase rubber-modified epoxy 
polymers where the epoxy matrix was modelled as 
either an elastic or elastic-plastic material. Their work 
revealed that the plane-strain model predicted higher 
stress concentrations within the glassy polymeric 
matrix than the axisymmetric model. Furthermore, 
they successfully applied their model to simulate the 
initiation and growth of the localized shear bands in 
the epoxy matrix which were initiated around rubber 
particles or voids. However, since this earlier model 
developed by Huang and Kinloch was essentially 
two-dimensional in nature, it could not accurately 
model the mechanism of cavitation/debonding of the 
rubber particle and the subsequent plastic hole- 
growth in the epoxy matrix. Their finite-element anal- 
ysis studies were also limited by the fact that their code 
was unable to incorporate relatively high values of the 
Poisson's ratio, v, of the rubber particles. Therefore, 
these authors were forced to combine the finite-ele- 
ment analysis with an analytical model in order to 
predict the fracture energy, GIc , of the rubber-modi- 
fied epoxy. This work emphasized the need for better, 
and more realistic, finite-element analysis models. 

More recently, Guild and Kinloch [13] have de- 
veloped a more accurate material model for analysing 
the stress distribution around the rubber particles. 
This model is based upon the idea of analysing a rep- 
resentative cell of the material. The use of a represen- 
tative cell for finite-element analysis is based on the 
concept that the interactions of neighbouring particles 
on the given particle are not directional; the overall 
effect is an 'average'arising from all the neighbouring 
particles. This assumption is reasonable for the low 
range of volume fractions used in this material. Thus, 
the overall material can be divided into cells, each 
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containing a single rubber sphere with a surrounding 
matrix of epoxy polymer. The boundary of a given cell 
is the region of the matrix closer to that particle than 
any other. These cells are the Voroni cells; for a ran- 
dom distribution of particles the distribution of cell 
sizes can be calculated (Davy and Guild [10]). On 
'average' the shape of the Voroni cell is spherical. 
Thus, the overall material model is a collection of 
spherical cells of different sizes, each containing 
a single rubber sphere. Strictly, any overall property 
for the material should be obtained by summing the 
contributions from the different cell sizes. This sum- 
ming may be carried out by application of a 'disper- 
sion factor' to the property value found for the cell 
describing the overall volume fraction. It should be 
noted that the correct use of this idea of a representa- 
tive cell can only be achieved by analysis of a spherical 
cell. The results presented in the present paper have 
been obtained for the spherical cell which describes 
the overall volume fraction. The application of the 
spatial statistical model is the subject of current work. 

The aims of the present work are to further develop 
the spherical cell model, and in particular to investi- 
gate the effect of the properties of the rubber particle 
on the stress distributions. As discussed above, this is 
an important step in the development of a model to 
describe the toughening mechanisms and to predict 
the toughness of these multiphase materials. Of par- 
ticular interest in the present work is the effect of the 
values assumed for the Young's and bulk moduli of 
the rubber phase, which are related through the Pois- 
son's ratio, v, of the rubber. It should be noted that in 
many rubber-toughened thermosetting polymers the 
rubber particles are formedvia in-situ polymerization 
and phase separation processes. It is therefore not 
possible to measure directly and independently the 
moduli of the rubber particles which are formed, and 
an estimate of these properties is usually made via 
indirect measurements. 

2. The finite-element model 
The modelling is based on the idea of a representative 
cell of material containing a single sphere of rubber. 
The spherical material model is therefore used, and 
this model reflects the overall isotropy of the material. 
Thus, the finite element grid consists of a sphere of 
rubber surrounded by an annulus of epoxy polymer. 
This cell can be drawn using axisymmetric elements; 
8-noded fully.integrated elements were used except at 
the apex where the elements are 6-noded triangles. 
A typical finite-element grid is shown in Fig. 1. Ana- 
lyses are also undertaken assuming a hole, instead of 
the rubber particle; the grid then consisted of the 
epoxy annulus alone. The finite-element code used 
was 'ABAQUS' which was run on a Convex C3800 
computer. 

Results have been obtained for a wide range of 
volume fraction of rubber spheres, up to about 40 %. 
The detailed investigations of the effects of the precise 
properties of the rubber on the calculated stress distri- 
butio, ns were undertaken for a material containing 
20 % ~volume fraction of rubber, since this is a typical 
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Figure 1 Typical finite-element grid showing the undeformed grid 
(solid lines) and the exaggerated shape of the deformed grid (dashed 
lines). 

amount used in commercial rubber-toughened epoxy 
polymersl 

The toughening mechanisms described above are 
observed ahead of a crack, in a triaxial stress field. The 
simplest triaxial stress field which can be applied to 
the spherical cell is a pure hydrostatic tensile stress. 
This stress field can be directly imposed via the ap- 
plication of stress, without the knowledge of the ma- 
terial properties of the overall material. The shape of 
the deformed grid is automatically spherical, as shown 
in Fig. 1, and this is the correct deformed shape. This 
loading was used for the detailed investigation of the 
effects of the rubber properties. 

However, it should be noted [14] that the stress 
system at the crack tip under plane-strain conditions 
is more accurately modelled via lower stresses in the x- 
and z-directions (as defined in Fig. 1). To maintain the 
axisymmetry, the stresses in the x- and z-directions 
were assumed to be equal. The effects of lower stresses 
in the x- and z-directions were investigated via ap- 
plication of four stress systems: 100 MPa applied in 
the y-direction and 90, 80, 70 or 60 MPa applied in the 
x- and z-directions. However, these stress systems can- 
not be simply applied to the spherical cell. The overall 
shape of the deformed cell must remain a perfect 
ellipse, since the overall material is isotropic. This 

shape would not be attained from application of the 
load above; constraints must be applied to force this 
shape. The application of these constraints models the 
interactions between neighbouring spheres, see Guild 
and Kinloch [13]. This is analogous to the constraints 

applied to force the edges of the cylindrical model to 
remain straight. Thus, the overall properties of the 
material must be found by using an iterative proced- 
ure, and then loads can be applied via application of 
prescribed displacements to the nodes around the 
edge of the grid. This is a lengthy procedure. The 
complex loading systems were applied for the grid 
representing 20 % volume fraction of rubber particles 
and for one set of properties of the rubber particle, 
namely with E = 1 MPa and v--0.49992, and for 
a hole. 

3. Material properties 
The results presented in the present paper are for 
linear elastic properties and input values of Young's 
modulus, E, and Poisson's ratio, v, are needed. The 
values used are shown in Table I. The values for a typ- 
ical epoxy matrix polymer are well established. How- 
ever, as commented above, the value of the Young's 
modulus, E, of the rubbery phase is far more difficult 
to establish and the range of values taken reflects the 
values quoted in the literature [15] where the in-situ 
polymerization has been simulated to manufacture 
'bulk' specimens of the rubber particles, which were 
subsequently used to determine the value of E from 
tensile stress versus strain measurements. A sensible 
range of Poisson's ratio, v, for the rubber has been 
selected. The upper Value chosen for v is very close to 
the maximum theoretical value of 0.5. It should be 
noted that the finite-element analysis package which 
has been employed fails if the value of v = 0.5 is used. 
However, the maximum value of v used in the present 
work is higher than that used previously by Huang 
and Kinloch [5, 6, 16] and Guild and Young [11]. 
Such relatively high values may now be used due to 
improved precision of the finite-element analysis code. 

The major, and most important, advantage of being 
able to use relatively high values for the Poisson's 
ratio is that this implies that the bulk modulus, K, of 
the rubber particle is relatively high. Indeed, input 
values E of 1 MPa and v = 0.49992 imply a value of 
K of about 2 GPa, which is of the order expected for 
a rubbery polymer [17]. Thus, also indicated in 
Table I are the values of the bulk modulus, K, and the 
shear modulus, G, which may be derived from the 
input properties of the Young's modulus, E, and Pois- 
son's ratio, v. 

The ranges of the values of the bulk modulus, K, 
and the shear modulus, G, of the rubbery phase, which 
may be derived from the input values of Young's 
modulus, E, and Poisson's ratio, v, are also shown in 
Fig. 2. As expected, of course, for a given input value 
of E, the value of the shear modulus, G, is relatively 

TABLE I Material properties 

Phase Input properties Derived properties 

E(GPa) v K(GPa) G(GPa) 

Epoxy 3.0 0.35 3.333 1.111 
Rubber 0.001 to 0.003 0.490 to 0.49999 0.0167 to 6.0 0.000333 to 0.001 
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Figure 2 Variation of derived properties of the rubber phase as 
a function of the input properties. (a) Variation of bulk modulus, K, 
with Poisson's ratio, v, for different values of Young's modulus, E. 
(b) Variation of shear modulus, G, with Poisson's ratio, v, for 
different values of Young's modulus, E. ~ E = 1 MPa, 
E=2MPa ,*-- E=3MPa. 
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Figure 3 Stress profiles through the epoxy annulus for an applied 
pure hydrostatic tension of 100 MPa. (Volume fraction of rubber 
phase is 20%; rubber properties are: E = 1 MPa and v = 0.4999.) 

Tangential stress + Radial stress . A  Von Mises 
stress. 

crated by applying a pure hydrostatic tensile stress of 
100 MPa,  that is, with the stresses acting in any direc- 
tion being 100 MPa. This gives rise to a maximum 
tangential stress of about  118 M P a  at the rubber/ep- 
oxy interface, and a maximum von Mises stress of 
about  35 M P a  also at this location. The maximum 
radial stress is at the surface of the epoxy annulus and 
has a value of 100 MPa,  which is equal to the imposed 
applied hydrostatic stress, as required. At the rubber/ 
epoxy interface, the radial stress is equal to the hy- 
drostatic stress in the rubber particle, and has a value 
of about  80 MPa.  

insensitive to the input value of v. On the other hand, 
for a given input value of E, the value of the bulk 
modulus, K, is extremely sensitive to the precise value 
of v, when v is greater than about  0.499. 

The effect of simply having a void, or hole, in the 
epoxy cell has also been ascertained. This was under- 
taken so that the effect of a cavitated, or interfacially 
debonded, rubber particle could be studied. As noted 
above, this aspect is of importance in the toughening 
process, as it subsequently allows plastic hole-growth 
in the epoxy matrix to occur. 

4. Results 
4.1. O v e r a l l  s t r e s s  d i s t r i b u t i o n  
The overall features of the stress distribution were 
unchanged for the range of rubber properties em- 
ployed. Application of a pure hydrostatic tensile stress 
to the representative cell places the rubber sphere in 
uniform hydrostatic tension. The stresses within the 
epoxy.annulus  vary, but are radially symmetric as 
expected. The maximum direct stress is at the inter- 
face, in the tangential direction, and the maximum von 
Mises equivalent stress is also at the interface. The 
radial stress is a maximum at the outer surface of the 
epoxy annulus. Typical profiles through the epoxy 
annulus for the direct (tangential), radial and von 
Mises stresses are shown in Fig. 3. These profiles are 
for 20 % volume fraction of rubber particles With the 
properties of the rubber being taken as E = 1 M P a  
and v = 0.4999; thus giving a value of K for the rubber 
of 1.67 GPa.  The imposed hydrostatic stress was gen- 
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4.2, E f fec t  o f  v o l u m e  f r a c t i o n  o f  r u b b e r y  

p h a s e  
The effects of the stress distributions arising from 
varying the volume fraction of the rubbery phase have 
been deduced using a constant value of Young's 
modulus of the rubber of E = 1 MPa. Two values of 
Poisson's ratio, v, have been used; namely v = 0.490 
and v = 0.49992. These values give bulk moduli, K, for 
the rubber particle of about  0.02 G P a  and 2 GPa,  
respectively. As commented above, the relatively high 
value of v = 0.49992 gives a bulk modulus value of 
about  2 GPa,  which is considered to be the more 
appropriate  for a rubbery polymer. Also, stress distri- 
butions arising from simply having a hole present in 
the epoxy cell were studied. In all cases the applied 
stress was pure hydrostatic tension of 100 MPa.  

The application of hydrostatic stress leads to 
values of only the bulk modulus of the cell; the 
complete elastic properties can only be found from 
unidirectional loading. The variation of the bulk 
modulus of the representative cell (i.e. the bulk 
modulus of the rubber- toughened epoxy) is shown as 
a function of the volume fract ion of the rubber  phase 
in Fig. 4. For  a value of v = 0.49992 for the rubber  
particle, the bulk modulus of the rubber-toughened 
epoxy is relatively high and is not greatly dependent 
upon the volume fraction of the rubber  particle. In 
contrast, when the value of v = 0.490 is taken for the 
rubber particle, the bulk modulus  of the rubber- 
toughened epoxy is relatively lower and is very de- 
pendent upon the volume fraction of the rubber  
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Figure 4 Variation of the bulk modulus  of the rubber- toughened 
epoxy with volume fraction of rubber phase for different values of 
Poisson's  ratio, v, of the rubber particle, and a hole. (Applied pure 
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E = 1 MPa.) - - ! - -  Hole - - ~ -  Poisson's  ratio = 0.490 -&-- 
Poisson's  ratio = 0.49992. 

tO  

300 

250 

200 

150 

100 

50 

0 0 1'o 2o 30 4o 50 
Volume fraction, (%) 

Figure 6 Variation of the max imum von Mises stress in the epoxy 
matrix with volume fraction of rubber phase for different Values of 
Poisson's ratio, v, of the rubber particle, and a hole. (Applied pure 
hydrostatic tension of 100 MPa;  rubber properties are: E = 1 MPa.) 
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Figure 5 Variation of the hydrostat ic tensile stress in the rubber 
particle with volume fraction of rubber phase for different values of 
Poisson's  ratio, v, of the rubber particle. (Applied pure hydrostatic 
tension of 100-MPa; rubber properties are: E = 1 MPa.) - l t - -  
Poisson's  ratio --- 0.490 ~ Poisson's  ratio = 0.49992. 
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Figure 7 Variation of the max imum direct (tangential) stress in the 
epoxy matrix with volume fraction of rubber phase for different 
values of  Poisson's ratio, v, of  the rubber particle, and a hole. 
(Applied pure hydrostatic tension of 100 MPa; rubber properties 
are: E = 1 MPa.) ~ -  Hole ~ -  Poissofl's ratio = 0.490 - - A - -  
Poisson's ratio = 0.49992. 

particle. Further, when v for the rubber particle is 
0.490, then the values for the bulk modulus of the 
rubber-toughened epoxy are in close agreement with 
those values obtained when simply a void, or hole, is 
assumed to exist in the epoxy matrix. 

The variation of hydrostatic stress in the rubber 
particle is shown as a function of the volume fraction 
of the rubber phase, and for different values of v of the 
rubber, in Fig. 5. The hydrostatic stresses for the Pois- 
son's ratio of 0.49992 are about forty times greater 
compared to the stresses for the Poisson's ratio of 
0.490. For  both  values of Poisson's ratio, the hydro- 
static stress in the rubber increases slightly as the 
volume fraction of rubber phase increases. The hydro- 
static stress being greater in the rubber particle, when 
its Poisson's ratio is high, would be expected, of 
course. This arises since a higher value of Poisson's 
ratio leads to a higher value of bulk modulus for the 
rubber particle, and hence greater hydrostatic stress 
levels arise. 

The variations of the maximum yon Mises stress 
and maximum direct stress in the epoxy matrix are 
shown in Figs 6 and 7, respectively. As shown pre- 
viously in Fig. 3, for both of these types of stresses 
their maximum values occur at the rubber/epoxy in- 
terface. The results for the lower value of Poisson's 

ratio (v -- 0.490) reveal relatively high values of von 
Mises and direct stresses in the epoxy matrix, and 
these stresses increase significantly as the volume frac- 
tion of rubber phase increases. Further, these results 
are very similar, but not completely identical, to the 
results for a hole. The von Mises and direct stresses for 
the case when the rubber has a relatively high Pois- 
son's ratio (v = 0.49992) are low in magnitude and are 
almost independent of the volume fraction of the rub- 
ber phase. These effects arise from the stress concen- 
trations being caused by the difference in properties 
between the rubber sphere and epoxy annulus. Hence, 
increasing the value of the Poisson's ratio of the rub- 
ber decreases this difference, so the stress concentra- 
tions would be expected to be smaller. 

4.3. Effects of rubber properties 
The effect of the precise rubber properties has been 
investigated in detail for a volume fraction of 20 % of 
rubber phase. As indicated in Table I, analyses were 
undertaken for a range of Young's modulus, E, of the 
rubber and as a function of the Poisson's ratio, v, of 
the rubber. The predicted variations of the bulk 
modulus of the rubber-toughened epoxy (i.e. the bulk 
modulus for the representative cell) are shown in 
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Figure 8 Variation of the bulk modulus of the rubber-toughened 
epoxy with Poisson's ratio, v, of the rubber particle for different 
values of the Young's modulus, E, of the rubber. (Applied pure 
hydrostatic tension of 100 MPa; volume fraction of rubber is 20%.) 
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Figure 9 Variation of the bulk modulus of the rubber-toughened 
epoxy with bulk modulus, K, of the rubber particle for different 
values of the Youug's modulus, E, of the rubber. (Applied pure 
hydrostatic tension of 100 MPa; volume fraction of rubber is 20%.) 
[ ~ E = I M P a ~ E = 2 M P a  AE=3MPa .  

Fig. 8, and the value approximately doubles over the 
range studied. As may be seen, the predicted value 
increases sharply for relatively high values of Pois- 
son's ra t io  of the rubber. As expected, this coincides 
with the sharp increase in the change of bulk modulus 
of the rubber, as shown in Fig. 2a. 

F rom the values of the Young's modulus, E, and 
Poisson's ratio, v, employed for the rubber in the 
above calculations one may obviously deduce the bulk 
modulus, K, of the rubber. Therefore, the predicted 
values of the bulk modulus of the rubber-toughened 
epoxy (i.e. K for the representative cell) are plotted 
against the value of K for the rubber in Fig. 9. The 
values for all the different analyses fall  onto one rela- 
tionship. Thus, the value of the bulk modulus of the 
rubber-toughened epoxy is dependent only upon the 
bulk modulus, K, of the rubber, the volume fraction of 
the rubbery phase and the properties of the epoxy 
matrix being held constant; see Table I. This observa- 
tion was also recorded for all the different types of 
stress distributions when they were calculated as func- 
tions of the Young's modulus, E, and Poisson's ratio, 
v, of the rubber. Namely, the predicted values of stres- 
ses are unique.functions of the bulk modulus of the 
rubber particle, the volume fraction of the rubbery 
phase and the properties of the epoxy matrix again 
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Figure 10 Variation of the different types of maximum stresses with 
bulk modulus, K, of the rubber particle. (Applied pure hydrostatic 
tension of 100 MPa; volume fraction of rubber is 20%.) ---N-- 
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Figure 11 Variation of the different types of maximum stresses with 
P0isson's ratio, v, of the rubber particle. (Applied pure hydrostatic 
tension of 100 MPa; volume fraction of rubber is 20%; rubber 
properties are: E = 1 MPa.) - [] - Hydrostatic stress in rubber 
(MPa) --4~-- Maximum direct stress in epoxy (MPa) + Max- 
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being held constant. This is discussed in more detail 
below; see Fig. 10. 

Of  course,  the bulk modulus of the rubber- 
toughened epoxy material is not dependent upon the 
type of applied stress system. Also, as noted above, 
when pure hydrostatic tension is applied to the cell the 
predicted values of stress distributions are unique 
functions of the bulk modulus of the rubber particle. 
However, it should be noted that this observation for 
the stress distributions is only appropriate  to the ap- 
plied stress system of pure hydrostat ic  stress. Prelimi- 
nary results for unidirectional loading imply a more 
complex relationship between the stress distributions 
and the properties of the rubber, i.e. the values of 
E and v (and hence E and K) of the rubber. Thus, for 
the 'crack-tip'. applied stress systems used in the pres- 
ent work, and described below in Section 4.4, the 
stress distributions in the rubber-(oughened epoxy 
material are not uniquely defined by the bulk modulus 
of the rubber particle, even when the volume fraction 
of the rubbery phase and the properties of the epoxy 
matrix are held constant. The relationships for the 
directional applied stress systems are discussed in de- 
tail elsewhere [18]. 

The variations in the (i) hydrostatic stress in the 
rubber particle, (ii) maximum von Mises stress in the 
epoxy matrix, and (iii) maximum direct stress in the 
epoxy matrix are shown as a function of the bulk 
modulus, K, of the rubber phase in Fig. 10. These 



results are for pure hydrostatic tensile stresses being 
applied to the cell and, as discussed above, they fully 
describe the variability of the different types of max- 
imum stresses with respect to the properties of the 
rubber phase. Fig. 11 shows the results for a fixed 
value of the Young's modulus, E, of the rubber of 
1 MPa and the variations in the stresses are shown as 
a function of the Poisson's ratio of the rubber particle. 
These results further emphasize the very great depend- 
ence of the values of the maximum stresses on the 
Poisson's ratio, for high values of Poisson's ratio. 

The results in Fig. 10 demonstrate that the hydro- 
static stress in the rubber sphere increases steadily 
with increasing bulk modulus of the rubber, although 
the rate of increase is lower as the value of K for the 
rubber rises. When the value of K of the rubber equals 
that of the epoxy annulus (i.e. equals 3.333 GPa), the 
model responds as an isotropic sphere and the stress 
state is pure hydrostatic tension. The maximum direct 
stress in the epoxy annulus decreases steadily with 
increasing bulk modulus of the rubber, although the 
rate of decrease is lower as the value of K for the 
rubber rises. The maximum von Mises stress in the 
epoxy annulus decreases relatively rapidly with in- 
creasing bulk modulus of the rubber, and attains 
a value of zero when the value of K of the rubber 
equals that of the epoxy. Since values of the von Mises 
stress are always positive, at higher values of K of the 
rubber the yon Mises stress increases gradually as the 
value of K for the rubber continues to rise. 

4.4. E f fec t  o f  a p p l i e d  s t r e s s  s y s t e m  
The effect of non-uniform stress systems has been 
studied for a volume fraction of 20 % of rubber par- 
ticles, or holes. The rubber particles had properties of 
E = 1 MPa and v = 0.49992, thus implying a bulk 
modulus of the rubber of K of about 2 GPa. Results 
were obtained for four different stress systems; the 
y-direction stress was set at 100 MPa, and the x- a n d  
z-direction stresses were varied. 

The overall stress system distributions were in 
agreement with the previous results for the pure hy- 
drostatic tensile stress system; see Fig. 3. The rubbery 
particle was always placed in uniform hydrostatic 

tension and the maximum concentrations of radial 
and von Mises stresses in the matrix were found at the 
equatorial plane of the particle, again at the par- 
ticle/matrix interface. The results are shown in Table 
II, an d  are compared with the results for the pure 
hydrostatic tension loading system. 

Now, as the stresses in the x- and z-directions are 
reduced, the applied pure hydrostatic tensile stress to 
the cell is reduced but the deviatoric (i.e. pure shear) 
component of the stress tensor will increase. Also, as the 
stresses in the x- and z-directions are reduced, the direct 
strain in the y-direction will increase. Thus, several 
major changes in the stresses and strains experienced 
by the cell occur as the applied stress system is changed. 

Considering firstly the results for the epoxy ma t r i x  
containing a hole, then as the stresses in the x- and 
z-directions are reduced the maximum yon Mises 
stress in the epoxy slightly decreases and the maxi- 
mum direct stress in the epoxy slightly increases. 
However, these changes are not very significant when 
compared with those seen in the rubber-toughened 
epoxy material. Secondly, as the stresses in the x- and 
z-directions are reduced for the rubber-toughened ep- 
oxy, the hydrostatic stress in the rubber particle de- 
creases. However, all the other Values of the stresses 
increase as the asymmetry of the loading increases. 
For  example, the yon Mises stress in the epoxy matrix 
increases by a factor of about three as one goes from 
an applied stress system of 100:100:100MPa to 
100:60:60 MPa. Thus, the Simple use of an applied 
pure hydrostatic stress system to model the conditions 
ahead of a crack lead to significantly reduced predic- 
tions for the values of the maximum von Mises stres- 
ses in the epoxy matrix compared to more realistic 
'crack-tip' stress state systems. 

A final point of interest is that the rubber particle is 
placed in virtually pure hydrostatic tension for all the 
stress systems used in the present work, including the 
asymmetric systems. This result may be compared 
with the stress state of the rubbery phase under a uni- 
directional tensile load. For  both single-phase par- 
ticles [11] and multiphase particles 1-12] the rubbery 
phase has again been found to be in virtually pure 
hydrostatic tension. The ability of the rubbery phase 
to achieve this stress state must arise from the fact 

TABLE II Effect of stress system 

Applied stress Hydrostatic stress Max. direct stress Max. von Mises stress 
y:x:z (MPa) in the rubber (MPa) in the epoxy (MPa) in the epoxy (MPa) 

Rubber particle 
100:100:100 
100:90:90 
100:80:80 
100:70:70 
100:60:60 

Void 
100:100:100 
100:90:90 
100:80:80 
100:70:70 
100:60:60 

87.1 111.3 24.1 
81.3 118.8 32.4 
75.5 126.2 44.6 
69.7 133.7 58.4 
63.9 141.2 72.7 

187.7 187.4 
190.0 181.9 
192.4 177.7 
194.8 174.8 
197.2 173.3 
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that, although it possesses a high bulk modulus, it has 
an extremely low shear modulus. Also, it should be 
noted that all the analyses have been conducted using 
small deformation theory. The shape of the deformed 
grid is therefore not taken into account in the stress 
calculations. The extension of this work to include the 
effect of high deformations is currently in progress. 

5. Discussion 
We have investigated the stress distributions in and 
around a rubber particle in a matrix of epoxy polymer, 
and also deduced the bulk modulus of the rubber- 
toughened epoxy. Of particular concern "has been the 
effects of the volume fraction and the properties of the 
rubber phase. The Young's modulus, E, and Poisson's 
ratio, v, of the rubber phase have been varied, so chang- 
ing the bulk modulus, K, of the rubber; see Fig. 2. The 
properties of the epoxy matrix have been kept constant; 
see Table I. Many interesting discussion points arise 
from the results reported in the previous sections. 

As shown in Figs 5, 6 and 7, the volume fraction of 
the rubbery phase (or hole) does influence the level of 
stresses generated both in the rubber particle and in 
the epoxy matrix. However, the volume fraction of the 
rubber particles may be readily measured, and con- 
trolled, and hence the information given in these fig- 
ures may be directly employed in a predictive model. 

The predicted bulk modulus of the rubber- 
toughened epoxy is shown as a function of the volume 
fraction of rubber particles in Fig. 4, the Poisson's 
ratio of the rubbery particles in Fig. 8 and the bulk 
modulus of the rubber particle in Fig. 9. (Recall the 
interrelationship between the Poisson's ratio and the 
balk modulus of the rubber particle shown in Fig. 2a.) 
Firstly, the unique relationship between the predicted 
bulk modulus of the rubber-toughened epoxy and the 
bulk modulus of the rubber particle, shown in Fig. 9, 
should be noted. Secondly, experimental values of the 
bulk modulus of the rubber-toughened epoxies are not 
reported in the literature. However, values of the tensile 
modulus and shear modulus have been reported [3, 19] 
as a function of volume fraction. Hence, the Poisson's 
ratio and the bulk modulus of the material may be 
deduced as a function of volume fraction. For a volume 
fraction of about 20 % rubber particles, the decrease in 
bulk modulus of the material would be expected from 
such experimental data to be about 10 to 15 %. From 
Fig. 4, for a v = 0.49992 (giving a K of rubber particles 
of about 2 GPa) the predicted decrease in bulk 
modulus of the material is about 10 %. Hence, there is 
very good agreement between theory and experiment. 

The choice of the bulk modulus, K, of the rubber 
phase (as fixed by the input values of E and v for the 
rubber) has a significant effect on the level of stresses 
generated both in the rubber particle and in the epoxy 
matrix. Fig. 10 illustrates how the levels of all the 
different types of stress concentrations are dependent 
upon the value of the bulk modulus of the rubbery 
particles; for example, whether K of the rubber phase 
is taken to be 1 or 3 GPa has a major effect. This is I la 
very important observation, since, as commented pre- 
viously, it is often difficult to ascertain the value of the 
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bulk modulus (or Poisson's ratio) of the rubber phase 
with great precision. Hence, the uncertainty in the 
values of the stress distributions may present prob- 
lems in further quantitative modelling of the toughen- 
ing mechanisms. It is also noteworthy that for the 
application of a pure hydrostatic tensile stress, the 
stress distributions, and bulk modulus of the rubber- 
toughened epoxy, are uniquely dependent upon the 
value of the bulk modulus of the rubber phase, the 
volume fraction of the rubbery phase and the proper- 
ties of the epoxy matrix being held constant. 

As previously commented by Huang and Kinloch 
[-16, 20], the precise value of the bulk modulus, K, (or 
Poisson's ratio, v) of the rubber particle will have 
a major influence on the exact sequence of the 
toughening mechanisms: For example, Figs 10 and 11 
clearly reveal that a relatively low value of K (or v) of 
the rubber will tend to lead to relatively low hydro- 
static stresses in the rubber, but high von Mises stres- 
ses in the epoxy. Thus, this will tend to promote shear 
yielding in the epoxy in preference to cavitation (or 
debonding) in the rubber particle it is also of interest 
to note that any particle with a relatively low bulk 
modulus (e.g. a polyethylene particle) would also obvi- 
ously promote such shear yielding. However, low 
bulk-modulus particles give rise to relatively low hy- 
drostatic stresses, and therefore they would not tend 
to readily cavitate, or debond. Recall that the import- 
ance of cavitation, or debonding, of the particle is that 
this gives rise to void formation which may then 
enable subsequent plastic hold growth in the epoxy to 
occur, and plastic hole growth in the epoxy matrix is 
a major toughening mechanism. On the other hand, 
a relatively high value of K (or v) 6f the particle will 
tend to lead to relatively high hydrostatic stresses in 
the particle, but low von Mises stresses in the epoxy. 
Thus, in this case, cavitation of the rubber particle will 
first be initiated, in preference to shear yielding of the 
epoxy matrix. As discussed in more detail below, a fur- 
ther point to note in this respect is that cavitation of 
the rubber particle will lead to a void and, from 
Figure 6, it may be seen that, for a rubber with a rela- 
tively high value of v (or K), this will lead to a con- 
siderable increase in the yon Mises stress in the epoxy 
matrix. Thus, extensive shear yielding and plastic hole 
growth in the epoxy matrix are both relatively fa- 
voured toughening mechanisms once void formation 
in the particle has occurred. 

To expand the above discussion, with the rubber 
having a bulk modulus of about 2 GPa (for example, if 
E = 1 MPa and v = 0.49992; giving a K of about 
2 GPa) then from Figs 5, 6 and 10 (or 11) it would be 
expected that cavitation will precede the initiation of 
localized shear bands, but once cavitation has occur- 
red (and hence a void has been created) the von Mises 
stress will rise dramatically and readily lead to plastic 
shear band formation and plastic hole-growth in the 
epoxy matrix. This observation is in good agreement 
with the results reported by Parker et al. [-21]. These 
workers employed rubber particles which were 
preformed before being added to a polycarbonate 
matrix and, from subsequent fracture experiments, 
they concluded that cavitation preceded localized 



shear yielding. The pure rubbery particles they em- 
ployed would possess a Poisson's ratio approaching 
0.5 and the observed sequence of events would be as 
predicted by our finite-element modelling. In the case 
of rubber-toughened epoxy polymers the situation is 
complicated by the fact that the value of v of the 
rubber particle will be dependent upon the amount of 
epoxy matrix trapped inside the particles, since the 
particles form by in-situ polymerization and phase 
separation processes. Consequently, the exact se- 
quence of initiation of the two mechanisms could be 
different for different formulations of rubber-toughened 
epoxy polymers, However, certainly the most detailed 
studies that have been reported [4, 22] suggest that 
cavitation precedes localized shear yielding. 

The question of whether an important role of void- 
ing of the rubber particle, due to either cavitation or 
debonding, is to relieve the triaxial constraint at the 
crack tip has been raised in the literature [1, 2, 22]. 
This effect is equivalent to the formation of a series of 
holes, or voids, greatly reducing the degree of triaxial 
tensile stresses acting in the matrix, and thereby pro- 
moting plastic yielding in the matrix. As discussed 
above, the precise value of the bulk modulus, K, (or 
Poisson's ratio, v) of the rubber particle will have 
a major influence on the answer to this question. If the 
Poisson's ratio, v, of the rubber particle is relatively 
low, then any cavitation, or debonding, to form a hole 
would not significantly change the von Mises stress in 
the epoxy matrix; see Fig. 6. However, if the Poisson's 
ratio, v, of the rubber particle is relatively high, then 
any cavitation, or debonding, to form a hole would 
indeed greatly increase the von Mises stress in the 
epoxy matrix, thus effectively relieving the triaxial 
constraint; again see Fig. 6. In this case cavitation or 
debonding would significantly promote any form of 
plastic shear yielding mechanism. 

This above conclusion obviously implies that small, 
well-dispersed holes should also significantly toughen 
an epoxy polymer, and indeed this has recently been 
shown to be the case [7]. However, the introduction of 
holes into an epoxy during the curing process is not 
easy, compared to the relatively straightforward at- 
tainment of a rubber-particulate microstructure which 
may later debond or cavitate when the material is 
loaded to give a "holes" ahead of the crack tip. Also, of 
course, the initial presence of holes throughout the 
complete body of the material will lead to the loss of 
other important properties, such as water resistance 
and permability coefficient. 

Finally, the results shown in Table II demonstrate 
that the exact details of the stress system applied to the 
cell are important. For example, for the rubber- 
toughened epoxy, the hydrostatic stress in the rubber 
decreases somewhat but the maximum von Mises 
stress in the matrix increases greatly as the stress 
system becomes more asymmetric in nature. The 
slight decrease in the hydrostatic tensile stress in the 
rubber may somewhat inhibit the cavitation or debon- 
ding of the rubber but, on the other hand, the major 
increase in the yon Mises stress in the epoxy matrix 
may significantly aid the initiation and growth of 
shear bands. 

6. Conclusions 
Predictive modelling of rubber-toughened epoxy 
polymers is a powerful tool for the investigation of the 
failure mechanisms. The importance of the rubber 
properties has been highlighted and it has been shown 
that the exact nature of these properties may influence 
the sequence of failure events in the material. The 
precise material properties of the rubbery phase in the 
rubber-toughened epoxy cannot be directly measured. 
However, a likely range of properties for the rubbery 
phase has been assumed and a comparison between 
the predicted and experimentally measured bulk prop- 
erties of the rubber-toughened epoxy reveals good 
agreement. Thus, the importance of the different fail- 
ure micromechanisms, and the sequence in which they 
occur, can be assessed. Hence, the quantitative predic- 
tion of toughening mechanisms in such materials may 
now be more readily undertaken. 
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